Клаас Хоффман
Алистер Кроули записал «Книгу Закона» в 1904 году. Она была продиктована ему сверхчеловеческим разумом, который назвался именем «Айвасс». Эта книга состоит из трех глав, запись которых совершилась в Каире на протяжении трех дней — 8, 9 и 10 апреля.
Тридцать три года спустя Кроули познакомился с художницей Фридой Харрис. Он решил создать новую колоду Таро и предложил леди Харрис нарисовать карты в соответствии с его замыслом — то есть, следуя его указаниям. Леди Харрис согласилась; она стала членом O.T.O. и приступила к работе. Многие из карт приходилось перерисовывать по несколько раз. Эскизы до сих пор хранятся в частной коллекции, а оригиналы окончательных вариантов — в Институте Варбурга, входящем в состав библиотеки Лондонского университета.
Библиотеку Варбурга основал в 1903 году в Гамбурге Аби Варбург, сын банкира-еврея. После прихода к власти нацистов в 1933 году всю коллекцию библиотеки (80 тысяч книг) вывезли в Лондон, и так был основан, собственно, лондонский Институт Варбурга. Именно там я смог изучить оригиналы картин леди Харрис, по которым были созданы карты Таро. Кроме того, мне удалось взглянуть на неопубликованные эскизы ранних версий, находящиеся в частном владении. Опубликованные к настоящему эскизы составляют лишь малую долю от всех вариантов, которые Фрида Харрис создала за пять лет работы над этой колодой.
На склоне лет Алистер Кроули написал книгу об этой новой колоде Таро — «Книгу Тота». Рассуждая о карте «Эон», он заметил: «…наше новое Таро можно рассматривать как систему иллюстраций к “Книге Закона”, поскольку оно во всем опирается на изложенное в ней учение».
Если вырезать эти карты из рамок, из них можно составлять исключительно гармоничные композиции, особенно из Старших арканов. Почему это так?
В «Книге Тота» Кроули отмечает, что гармоничность карт свидетельствует о верности применения символов и цветов, подобранных в соответствии с учением священной каббалы, на которой основано его Таро. Составляя коллажи из карт этой колоды, я обратил внимание на то, что связи между теми или иными картами определяются не только цветовыми и символическими параллелями, но и самой геометрией изображений. Какого же рода геометрию леди Харрис использовала для создания этих связей?
Использованная ею геометрия представляет собой разработку классической евклидовой геометрии, основы которой заложил в XVII веке математик Декарт1. Она известна под названием «синтетическая проективная геометрия» и своим дальнейшим развитием обязана целому ряду математиков из разных стран Европы. Многие идеи Декарта — такие, например, как аксиома параллельных прямых, пересекающихся в бесконечности, — опираются одновременно и на математические, и на мистические предположения. Для всех прямых одного направления бесконечно удаленные точки должны быть тождественны, поскольку этого требует само понятие бесконечной удаленности.
Так, благодаря введению бесконечно удаленных элементов, проективная геометрия вдохнула новую жизнь в евклидову концепцию жестких, неподвижных форм. В последующие столетия она сделала еще один шаг вперед, введя идею полярной противоположности — фактора, описывающего отношения между центром и периферией, или центральной точкой и бесконечно удаленной от нее поверхностью.
В результате был сделан вывод, что все точки любого мыслимого пространства находятся на одинаковом расстоянии от бесконечно удаленной поверхности.
Следующим этапом в развитии проективной геометрии — уже в двадцатом столетии — стало принятие концепции пространства, полярно противоположного нашему трехмерному пространству. Возможно ли заменить идею бесконечно удаленной поверхности идеей бесконечного центра?..
И как Фрида Харрис познакомилась с проективной геометрией и ее практическим применением в графике?
Этим знакомством она обязана людям, шедшим по иному духовному пути, нежели Кроули: Рудольфу Штайнеру, Джорджу Адамсу и Оливии Уичер.
Рудольф Штайнер был основателем антропософии — движения, породившего, среди прочего, вальдорфские школы, эвритмию и биодинамическое земледелие.
Джордж Адамс был одним из антропософов, принесших это учение в Англию. Он побывал в Дорнахе, где познакомился с Рудольфом Штайнером. В то время он состоял в группе ученых, разрабатывавших идеи проективной геометрии — концепцию пространства с бесконечным центром.
Рудольф Штайнер признавал, что идея бесконечного центра не менее важна для человека, чем представление о бесконечно удаленной периферии. Сама категория бесконечности необходима человечеству для душевного и эмоционального равновесия и для духовного развития. Штайнер полагал, что бесконечность — или, лучше сказать, бесконечное ничто — заключено в центре солнца.
С Оливией Уичер — писательницей, исследовательницей и преподавательницей антропософии — мне довелось познакомиться лично. Она терпеливо старалась разъяснить мне принципы проективной геометрии. В свое время она написала в соавторстве с Джорджем Адамсом несколько книг по проективной геометрии и сотрудничала с ним вплоть до его смерти. Последней ее крупной публикацией стала книга «Солнечное пространство», в которой она излагает результаты математических исследований, истолкованные в свете духовно-научных открытий Штайнера. Эту дисциплину преподают в Эмерсон-колледже — школе Рудольфа Штайнера в Форест-Роу (Южная Англия).
В марте 1935 года Уичер познакомилась с членами лондонского Антропософского общества, а немного позднее — и с Джорджем Адамсом. Адамс преподавал проективную геометрию в штайнерианской школе. Уичер стала посещать его лекции, и вскоре они начали сотрудничать. К тому времени, когда в школу пришла Фрида Харрис, они уже вели курсы проективной геометрии вместе.
Это произошло уже после того, как Харрис начала работать над Таро, — по всей вероятности в 1937 году, так как именно с этого года в дневниках Кроули начинают встречаться записи о совместной работе с Харрис.
Харрис записалась на курсы проективной геометрии и подружилась с Уичер и Адамсом. Джордж Адамс называл ее Дианой, полагая, что это имя подходит ей гораздо лучше, чем «Фрида». Диана, между прочим, изображена на карте Таро «Искусство». В беседах с Джорджем и Оливией Харрис упоминала о своем сотрудничестве с Кроули и о том, что она применяет знания, полученные на курсах, в своей работе над картами Таро. Рассказывая мне о Харрис, Оливия неизменно отмечала, что та была очень необычным и очень дружелюбным человеком.
Знакомство с Харрис, в свою очередь, помогло Адамсу и Уичер ввести некоторые практические новшества в собственную работу. Они рисовали растения, и Харрис предложила им использовать для этой работы как можно более твердые цветные карандаши в сочетании с самыми мягкими пастельными красками. Некоторые рисунки, выполненные Адамсом и Уичер, все еще украшают стены штайнерианской школы в Лондоне. Предназначение этих картин заключалось в том, чтобы наглядно продемонстрировать идеи проективной геометрии и показать, что все мы хорошо знакомы с ними и встречаем их каждый день в своем окружении. Кроме того, Адамс и Уичер старались использовать в своей работе научные идеи Гёте. С моей точки зрения, суть этих идей составляет бунт против ошибочного мнения о том, что живое можно проанализировать и понять теми же методами, что и неживое. Невозможно понять дерево, разобрав его на части и изучив их по отдельности, как если бы это было не дерево, а автомобиль.
Мысли Гёте об изменчивых формах растительного царства повлияли на концепцию постоянного взаимодействия между пространством и антипространством, которую разрабатывали Адамс и Уичер. Это «антипространство» более точно описывается термином «солнечное пространство», поскольку Солнце есть источник силы, порождающей и поддерживающей всю жизнь на Земле. То, что эта сила наглядно отражена в растениях, Адамс в полной мере осознал весенним днем 1947 года, когда они с Оливией прогуливались по Риджентс-парку (всего в нескольких минутах ходьбы от штайнерианской школы). Проходя мимо живой изгороди, покрытой распускающимися почками, Адамс внезапно остановился и воскликнул (цитирую далее по книге Уичер «Джордж Адамс»):
— Ну конечно! Это же и есть эфирное пространство!
А затем он описал в геометрических терминах, как проявляется импульс прорастания листа или группы маленьких листьев; как они пробиваются из точки роста и по мере своего развития постепенно теряют изначальную жизненную силу. Фактически, живое вещество — это и есть физическая манифестация эфирного пространства. Процесс роста протекает не в эфирном, а в обычном пространстве, но первый толчок к нему дают силы, заключенные в «точке роста», внутри которой скрыта бесконечность. Семя или прорастающий зародыш физически невелики, но в эфирном пространстве огромны! И это в точности описывалось концепциями высшей математики.
Концепция бесконечно малой точки, заключающей в себе жизненную силу бесконечности, занимает важнейшее место и в «Книге Закона». Эта точка называется Хадитом. Сам Хадит описывает себя в «Книге Закона» так:
Я не протяжен [II:2],
и
Я — пламя, горящее в сердце каждого человека и в ядре каждой звезды. Я — Жизнь и податель Жизни, и потому познавший меня знает смерть [II:6].
Три главы «Книги Закона» соответствуют трем божествам египетского происхождения: Нут, Хадиту и Хору.
Хад, или Хадит, олицетворяет сокровенное средоточие каждого человека. Эта та искра света, которая превосходит и смерть, и перерождение. Хадит «не протяжен». Его пространство сродни «солнечному пространству».
Ну, или Нут, — богиня неба. Она — само звездное небо, объемлющее собою все, что нас окружает.
Хор — сын Нут и Хадита, плод союза двух бесконечностей: бесконечного центра и бесконечной окружности.
Вторая глава «Книги Закона» начинается следующими стихами:
1. Ну! сокрытие Хадита.
2. Придите, вы все! и узнайте тайну, что прежде не открывалась. Я, Хадит, есть дополнение Ну, невесты моей. Я не протяжен, и Хабс — имя Дома моего.
3. В сфере я — центр, что пребывает всюду, она же окружность, которой нету нигде.
4. Но она будет познана, а я — никогда.
В этих стихах обнаруживаются переклички с идеями проективной геометрии и с концепцией солнечного пространства. Пояснением этому служит цитата из эссе Адамса «Универсальные силы периферии и растения»:
Следует как можно более отчетливо сформулировать концепцию подлинных образов сил, парящих во вселенной подобно плоским картинам, в отличие от земнородных сил точечных центров, устремляющихся вверх подобно стреле. Тогда мы получим точное научное описание таких сил, у которых нет фокальной точки, но есть периметр.
Аналогия солнечному пространству обнаруживается в работе наших органов чувств: всякий предмет кажется нам тем меньше, чем более он от нас удален. Я не могу сколько-нибудь внятно описать, как именно мои глаза связаны с моей душой, пребывающей в солнечном пространстве, но я знаю, что законы оптики согласуются с законами солнечного пространства. Чем ближе ко мне оказывается предмет, тем он становится крупнее; чем ближе предмет к центру моего восприятия — к моей душе, пребывающей в солнечном пространстве, — тем больше ему уделяется места.
В связи с концепцией солнечного пространства я хотел бы обсудить также следующие стихи из первой главы «Книги Закона»:
6. Будь Хадитом, сокровенным средоточием моим, моим сердцем и моим языком!
7. Узри! это открыто Айвассом, служителем Хор-пар-крата.
8. Хабс — в Ху, а не Ху — в Хабс.
9. Поклоняйся же Хабс и узри мой свет, излившийся на тебя!
Айвасс — посланник пассивной, интровертированной ипостаси Хора. Суть его соответствует природе Солнца. Хадит пребывает в солнечном пространстве, или антипространстве, равно как и Хабс, обитель Хадита. Связь между нашей душой и телом обеспечивает Ху. Ху — это наше световое, или астральное, тело. В своей работе «Очерк тайноведения» Штайнер писал, что в астральном теле сосредоточены все наши чувства и страсти.
Астральное тело, или Ху, пронизывает собою другое тонкое тело — эфирное, а оно, в свою очередь, пронизывает собою физическое тело, вдыхая в него жизнь. Эфирное тело занимает промежуточное положение между пространством и антипространством, между материальным и нематериальным существованием. Эфирное тело пронизано астральным, а физическое — эфирным; следовательно, астральное тело, или Ху, находится в постоянной связи с телом физическим и на него можно повлиять через физическое тело. Таким образом, Ху по своим свойствам и природе родственно материальному веществу и поэтому преходяще. Иное дело — обитель души и сама душа. Эта обитель (Хабс) и ее обитатель (Хадит) бессмертны. Требуя «поклоняться Хабс», Айвасс тем самым требует поклоняться вечному и внутреннему; при этом к числу внешних вещей он относит не только плотноматериальные предметы, но и наши тонкоматериальные тела.
Описанные здесь пространственные и временные структуры взывают к самому сокровенному и священному из всего, что у нас есть, и, в конечном счете, служат лишь одной цели: они призваны помочь каждому человеку исполнить его свободную волю. Источник же этой свободной воли — духовный мир: наше высшее «Я», наша душа.
Постскриптум от 10 октября 1999 года
С 18 сентября 1999 года я снова начал посещать Эмерсон-колледж и получил возможность продолжить свои беседы с миссис Уичер.
В марте 2000 года Оливии исполнится 90 лет, если позволит здоровье2. У нее серьезные проблемы с памятью, и поначалу она меня не узнала. Лишь после нескольких бесед она вспомнила наши встречи 1990—1991 годов.
Миссис Уичер прочитала мою статью о проективной геометрии в Таро леди Харрис и подтвердила ряд важных фактов. Но саму историю введения элементов проективной геометрии в это Таро она изложила несколько по-иному, чем в первый раз.
По ее словам, она познакомилась с Фридой Харрис около 1938 года. Студия Фриды находилась по соседству с Риджентс-парк и, соответственно, со штайнерианской школой. Оливия припомнила, что несколько раз заходила в студию леди Харрис, располагавшуюся, по всей видимости, на верхнем этаже (Оливии запало в память, что пришлось долго подниматься по ступенькам).
В 1990—1991 годах Оливия утверждала, что леди Харрис обучалась проективной геометрии на курсах, которые Адамс и Уичер вели в штайнерианской школе. Теперь же она заявила, что давала Фриде частные уроки, именно ради этого посещая ее студию. Но, на мой взгляд, две эти версии не исключают друг друга.
Уичер рассказала, что Адамс подружился с Фридой и что та произвела сильное впечатление на них обоих. Она подтвердила, что Адамс называл леди Харрис Дианой — именем богини, изображенной на карте «Искусство» в Таро Кроули.
По словам Оливии, леди Харрис красила волосы в рыжий цвет, что по тем временам было весьма необычно. Харрис придерживалась либеральных взглядов в политике и была исключительно свободолюбивой, одухотворенной и сильной личностью. Оливия призналась, что была очень огорчена, когда Харрис навсегда покинула Англию (остаток своих лет она провела на жилой барже в Кашмире). Помимо того, Оливия выразила сожаления по поводу того, что леди Харрис так и не приняла антропософию.
В 1991 году я попросил у миссис Уичер разрешения опубликовать статью о взаимосвязи между проективной геометрией, как та преподавалась в штайнерианской школе, и Таро Фриды Харрис, использовав в качестве иллюстраций некоторые чертежи из книги Уичер «Солнечное пространство». После долгих колебаний Уичер дала свое разрешение; доводом, убедившим ее, стал принцип свободы информации — элемент философии тройственной структуры общества, которую проповедовал Штайнер (культурная и религиозная свобода, экономическое братство и равенство перед законом).
К Телеме и Алистеру Кроули Уичер относится резко отрицательно. Она никак не может взять в толк, почему леди Харрис предпочла Телему антропософии. В последней нашей беседе Уичер заявила, что Харрис была «словно околдована этим Кроули» — так крепко она за него держалась и так сильно за него переживала (Кроули в то время тяжело страдал от астмы). Однако о самой Харрис Адамс и Уичер были самого лучшего мнения. А Харрис хранила непоколебимую верность Кроули.
Уичер, со своей стороны, была убеждена, что всякий контакт с Алистером Кроули или его учением чреват опасностью. Попытки провести параллели между антропософией и философией Телемы казались ей заблуждением. Ее позицию недвусмысленно проясняет цитата из нашей последней беседы: «Забудьте все, что вы знаете, и читайте книги Рудольфа Штайнера, пока не прочитаете все, что он написал!»
Неточность автора. Основы проективной геометрии заложил французский математик и архитектор Жерар Дезарг (1591—1661), друг Декарта. Ему же принадлежит изложенная ниже идея о пересечении параллельных прямых в бесконечно удаленной точке.
Оливия Уичер скончалась в 2006 году, в возрасте 96 лет.
© Перевод: Анна Блейз, 2010